azoline ring has formed at a different site. The rearrangements are depicted in Scheme I which also outlines a plausible mechanism. Note that the five-membered ring formed at the amino acid N atom is preferred to a seven-membered ring involving the N atom of an adjacent ethylenediamine.

The known absolute configuration of (R)-cysteine, coupled with the known configurations of the reactant, fixes the chirality about cobalt as Δ which confirms the suspected retention of configuration at both centres during the reaction. The X-ray anomalous dispersion results are also consistent with this assignment (weighted R values for the Δ and Λ configurations 0.0960 and 0.0968 , respectively). The thiaamidine moiety is delocalized over both N atoms since the $\mathrm{C}-\mathrm{N}$ bond lengths are almost the same (1.32 (3) and 1.29 (2) \AA) and the atoms Co, $\mathrm{N}(1), \mathrm{C}(2), \mathrm{C}(4)$, and $\mathrm{N}(6)$ are essentially coplanar (mean deviation $0.015 \AA$). This indicates that both N protons should be found on the N atom exo to the ring even though they were not located crystallographically unambiguously. Such an assignment is in keeping with other coordinated amidine structures where the protons have always been found on the uncoordinated N atom. ${ }^{6-8}$ Furthermore, the ${ }^{1} \mathrm{H}$ NMR spectrum in MeSO- d_{6} showed an isolated NH_{2} resonance ($\delta 7.25,2$ protons) which indicates the N -proton distribution in the crystal is retained in solution. In $\mathrm{D}_{2} \mathrm{O}$ or DCl , however, exchange was too rapid to allow the observation of the NH_{2} signal. Isomer V was deprotonated by OH^{-}and the isolated perchlorate salt ${ }^{9}$ gave an NH signal at $\delta 5.33$ (1 H) in $\mathrm{Me}_{2} \mathrm{SO}-d_{6}$. Deprotonation of the exo NH_{2} is implicated (VI).

Under the basic conditions of the CN^{-}addition ($\mathrm{pH} \sim 9$), mutarotation of the configuration about cobalt in the reactant sulfenamide would be rapid ($\left.t_{1 / 2} \sim 20 \mathrm{~s}\right) .{ }^{3}$ The results show however that the Δ configuration is retained and therefore nucleophilic attack at S must be exceedingly rapid under the conditions ($0.1 \mathrm{M} \mathrm{CN}^{-}, t_{1 / 2} \leqq 1 \mathrm{~s}, 20^{\circ} \mathrm{C}$). This conclusion is in keeping with previously reported reductions and additional observations on the sulfenamide II using $\mathrm{BH}_{4}{ }^{-}, \mathrm{S}_{2} \mathrm{O}_{4}{ }^{2-}$, $\mathrm{SO}_{3}{ }^{2-}$, and RS ${ }^{-}$ions. ${ }^{2,3}$ All of the reagents react rapidly and cleave the sulfenamide bond without mutarotation about cobalt.

An alternative stereospecific synthesis of the 2 -aminothi-azoline-4-carboxylato chelate, V , was found through the action of CN^{-}on the cystine dimer, VII, Scheme II, of known

Scheme II

structure and absolute configuration. ${ }^{2}$ Half of the dimer yields the thiazolinecarboxylato chelate; the other half yields the N,O-bound cysteinato complex, VIII. This result also confirms the absolute configuration derived from the sulfenamide and lends support to the mechanistic proposals in Scheme I. Both reactions should take place through the dangling thiocyanate intermediate III. Also it supports earlier observations ${ }^{10}$ on the reaction between CN^{-}and uncoordinated (R, R)-cystine which was believed to give the aminothiazoline carboxylate reported here.

Acknowledgments. The authors thank Dr. Ward T. Robinson and the Chemistry Department, University of Canterbury, Christchurch, New Zealand, for use of the diffractometer.

Supplementary Material Available. Atomic parameters (Table 1), bond distances, angles, dihedral angles, and mean planes (Table 2), and listings of observed and calculated structure factors (Table 3) (5 pages). Ordering information is given on any current masthead page.

References and Notes

(1) G. J. Gainsford, W. G. Jackson, and A. M. Sargeson, J. Am. Chem. Soc., 99, 2383 (1977).
(2) W. G. Jackson, A. M. Sargeson, and P. A. Tucker, J. Chem. Soc., Chem. Commun., 199 (1977).
(3) G. J. Gainsford, W. G. Jackson, A. M. Sargeson, and A. D. Watson, unpublished work.
(4) Anal. Calcd for $\mathrm{CoC}_{8} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{SCl}_{2} \mathrm{O}_{10}: \mathrm{C}, 18.4 ; \mathrm{H}, 4.1 ; \mathrm{N}, 16.1 ; \mathrm{S} .6 .1 ; \mathrm{Cl}$, 13.6. Found: C, $18.5 ; \mathrm{H}, 4.2 ; \mathrm{N}, 16.1 ; \mathrm{S}, 6.0 ; \mathrm{Cl}, 13.6$.
(5) B. F. Anderson, D. A. Buckingham, G. J. Gainsford, G. B. Robertson, and A. M. Sargeson, Inorg. Chem., 14, 1658 (1975), and references therein.
(6) D. A. Buckingham, B. M. Foxman, A. M. Sargeson, and Z. Zanella, J. Am. Chem. Soc., 94, 1007 (1972).
(7) J. Springborg, R. J. Geue, A. M. Sargeson, D. Taylor, and M. R. Snow, J. Chem. Soc., Chem. Commun., 647 (1978).
(8) I. I. Creaser, S. F. Dyke, G. B. Robertson, A. M. Sargeson, and P. A. Tucker, J. Chem. Soc., Chem. Commun., 289 (1978).
(9) Anal. Calcd for $\left[\mathrm{CoC}_{8} \mathrm{H}_{20} \mathrm{~N}_{6} \mathrm{SClO}_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O} ; \mathrm{C}, 21.8 ; \mathrm{H}, 5.0 ; \mathrm{N}, 19.1 ; \mathrm{S}, 7.3 ;$ $\mathrm{Cl}, 8.0$. Found: $\mathrm{C}, 21.8 ; \mathrm{H}, 4.8 ; \mathrm{N}, 18.8 ; \mathrm{S}, 7.2 ; \mathrm{Cl}, 8.3$.
(10) A. Schoberl, M. Kawohl, and R. Hamm, Ber., 84, 571 (1951), and references therein.

Graeme J. Gainsford
DSIR Chemistry Division,
Petone, New Zealand
W. Gregory Jackson ${ }^{1}$

Department of Chemistry; Faculty of Military Studies
University' of New South Wales
Duntroon, Canberra, A.C.T., Australia

Alan M. Sargeson*
Research School of Chemistry
The Australian National University
Canberra, A.C.T. 2600, Australia
Received January 12, 1979

Vinylic Cations from Solvolysis. 28. ${ }^{1}$ Solvent Dependency of the Solvolytic Site of 9-(α-Bromoanisylidene)-10-hydroxy-9,10-dihydroanthracene

Sir:
In a recent communication ${ }^{1}$ we reported the preparation and the rates of solvolysis $\left(k_{\mathrm{t}}\right)$ and loss of optical activity $\left(k_{\alpha}\right)$ of an optically active vinylic compound, 9 -(α-bromoanisyli-dene)-10-hydroxy-9,10-dihydroanthracene (1), in TFE. It was concluded that ion pairs are not involved in the solvolysis, indicating the suitability of $\mathbf{1}$ and its analogues for studying the selectivities of solvolytically generated free cations. A com-

$$
\xrightarrow[\mathrm{k}_{\text {rear }}]{\mathrm{SOH}}
$$

2

3
peting initial solvolysis of the 10 -hydroxy group was excluded, among other evidence, by the lower solvolytic rearrangement rate ($k_{\text {rear }}$) of the nonbromo analogue 2 to 3 . We now report that the initial solvolytic site of $\mathbf{1}$ is solvent dependent.

Table I gives k_{t} values (measured either by UV or titrimetrically) and k_{α} values for $\mathbf{1}$ and $k_{\text {rear }}$ values for $\mathbf{2}$ in $80 \% \mathrm{EtOH}$ and AcOH . In $80 \% \mathrm{EtOH} k_{\alpha} / k_{\mathrm{t}}=1.02 \pm 0.04$ and common ion rate depression ${ }^{2}$ within a run was not detected, although k_{t} in the presence of $\mathrm{Bu}_{4} \mathrm{NBr}\left(k_{\mathrm{d}}\right)$ is reduced. Combination of

Scheme I

Table I. $K_{\alpha}, k_{\mathrm{t}}$, and $k_{\text {rear }}$ Values in Several Solvents

compd ${ }^{a}$	solvent	base b	$\mathrm{Bu}_{4} \mathrm{NBr}, \mathrm{M}$	$T,{ }^{\circ} \mathrm{C}$	k	$10^{6} \mathrm{k}, \mathrm{s}^{-1}$
1	$80 \% \mathrm{EtOH}$	2,6-lutidine		100	$k_{\text {ck }}$	127 ± 1.8
					$k_{t}{ }^{\text {c }}$	106.4 ± 1.3
	$80 \% \mathrm{EtOH}$	2,6-lutidine		100	$k_{1}{ }^{\text {c }}$	114.7 ± 2.7
					$k_{\mathrm{t}}{ }^{d}$	125 ± 2.0
			0.01	100	$k_{\mathrm{t}}{ }^{d}$	79.9 ± 0.9
			0.1	100	$k_{1}{ }^{d}$	43.5 ± 0.9
2	$80 \% \mathrm{EtOH}$	2,6-lutidine		100	$k_{\text {rear }}$	113 ± 2
			0.01	100	$k_{\text {rear }}$	117 ± 8
1	AcOH	NaOAc		29	$k_{\text {r }}$	11.2 ± 0.06
	AcOH	NaOAc		49.6	k_{0}	105 ± 8.1
	AcOH	NaOAc		49.6	$k_{\mathrm{t}}{ }^{\text {c }}$	0.78 ± 0.02
	AcOH	NaOAc		49.6	$k_{\mathrm{t}}{ }^{\text {d }}$	0.77 ± 0.02
2	AcOH	NaOAc		20	$k_{\text {rear }}$	1115 ± 15
1	$\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}^{e}$	NaOAc		49.6	$k_{\text {re }}$	47.7 ± 1.0
	$\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}^{e}$	NaOAc	0.01	49.6	k_{α}	57.3 ± 2.8
	$\mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}^{e}$	NaOAc		49.6	$k_{1}{ }^{\text {c }}$	0.34 ± 0.01

${ }^{a}$ [Substrate], $0.002 \mathrm{M} .{ }^{b}$ [Base], 0.004 M in $80 \% \mathrm{EtOH}$ and AcOH and 0.008 M in $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$." By following the formation of 4 by UV. ${ }^{d} \mathrm{By} \mathrm{Br}^{-}$titration. ${ }^{e} 1: 1 \mathrm{v} / \mathrm{v}$.
the equations for common ion rate depression ${ }^{2}$ and normal salt effect ${ }^{3}$ gives a relationship from which a normal salt effect parameter, $b=19$, and a selectivity constant, $\alpha=k_{\mathrm{Br}^{-}} /$ $k_{80 \% \mathrm{EtOH}}=65 \mathrm{M}^{-1}$, were calculated, ${ }^{4}$ The solvolysis product was 9 -anisoylanthracene (4). The rearrangement of 2 gave mainly the ether $3(\mathrm{~S}=\mathrm{Et})$ and its rate was slightly affected by added $\mathrm{Bu}_{4} \mathrm{NBr}$. The $k_{\text {rear }}(\mathbf{2}) / k_{\mathrm{t}}(\mathbf{1})$ value was 0.9 .

The solvolysis of $\mathbf{1}$ in dry AcOH or in $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ buffered with NaOAc gave mainly or exclusively the ketone 4. ${ }^{5}$ It was followed by UV or by bromide ion titration and was much slower than the loss of optical activity. The $k_{\alpha} / k_{\mathrm{t}}$ values were 136 ± 1 in AcOH or in $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ at 49.6 C . After 7 half-lives of the loss of optical activity, the main product was 10-acetoxy-9-(α-bromoanisylidene)-9,10-dihydroanthracene ($11, \mathrm{~S}=\mathrm{Ac}$) and 4 constituted $<2 \% .{ }^{6}$ The rearrangement of 2 in AcOH to the acetate $\mathbf{3}(\mathrm{S}=\mathrm{Ac})$ was much faster than the solvolysis and was measured at a lower temperature. By applying a conservative value for the activation energy, a $k_{\text {rear }}(\mathbf{2}) / k_{\mathrm{t}}(\mathbf{1})$ value of >12000 and a $k_{\text {rear }}(\mathbf{2}) / k_{\alpha}(\mathbf{1})$ value of >150 in AcOH were estimated.

We interpret these results by a different solvolysis mechanism in the two solvents (Scheme I). 4 may be formed either
via an initial $\mathrm{C}-\mathrm{Br}$ bond cleavage (route a) or via an initial $\mathrm{C}-\mathrm{OH}$ bond cleavage (route b). Optical activity is lost in either case since ions 5 and 10 are both achiral. Hence, the $k_{\alpha} / k_{\mathrm{t}}$ probe for evaluating ion-pair return is meaningful only if route b is excluded. In $80 \% \mathrm{EtOH}$ it is excluded by the common ion rate depression that shows that $\geqslant 87 \% 4$ is derived from the free ion 5,7 by the similarity of k_{t} with the $k_{\mathrm{t}}{ }^{\circ}$ value of 1.8×10^{-4} s^{-1} for the solvolysis of $\mathbf{1 5}$ in $80 \% \mathrm{EtOH}-2,6$-lutidine at 105.1

15

16
${ }^{\circ} \mathrm{C}^{8}$ and by the much lower $k_{\text {rear }}(\mathbf{2}) / k_{\mathrm{t}}(\mathbf{1})$ value in $80 \% \mathrm{EtOH}$ than in AcOH . Consequently, the near identity of k_{α} and k_{t} is due to a rate-determining formation of 5 which gives rapidly racemic products, and which returns to 1 with excess Br^{-}. As found in TFE, ${ }^{1}$ ion-pair return with racemization (measured by $k_{\alpha} / k_{\mathrm{t}}-1$) is negligible. However, in the less ionizing and more nucleophilic $80 \% \mathrm{EtOH}, 95$ shows lower selectivity in its reactions with Br^{-}and with the solvent.

The situation is different in AcOH and in $1: 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$. The high k_{c} / k_{t} values would usually be ascribed to $\geqslant 99 \%$ return with racemization of intermediate ion pairs, ${ }^{2 \mathrm{c}}$ but this is in contrast with the results in TFE and in $80 \% \mathrm{EtOH}$ and with the lower extent of ion-pair return (31% in $1 ; 1 \mathrm{AcOH}-\mathrm{Ac}_{2} \mathrm{O}$ and 47% in AcOH) in the solvolysis of (Z)-1,2-dianisyl-2phenylvinyl bromide. ${ }^{10}$ On the other hand, route b, with a rate-determining formation of $\mathbf{1 0}$, accounts for the face that formation of $\mathbf{1 1}$ precedes that of $\mathbf{4}$ with the ~ 3-fold higher $k_{\text {cr }}$ in AcOH compared with that in the much more ionizing TFE, ${ }^{9}$ but it raises two problems: (a) it postulates racemization via capture of the hybrid ion $\mathbf{1 0 a - b ^ { 1 / }}$ at $\mathrm{C}-10$ rather than at C_{α}, although capture at $\mathrm{C}_{c r}$ gives an aromatic system; (b) it has to explain the very high $k_{\text {rear }}(\mathbf{2}) / k_{\alpha}(\mathbf{1})$ ratio which indicates that the ionization $\mathbf{2} \boldsymbol{\rightarrow 1 6}$ is favored over the ionization $\mathbf{1 \rightarrow 1 0}$, although in the solvolytic generation of an sp^{2}-hybridized ion an α halogen is activating compared with an α hydrogen. ${ }^{12} \mathrm{We}$ ascribe the two phenomena to a steric interaction of the 1 and 8 hydrogens of the 9 -anthryl group of the 9 -anthrylmethyl cations 10 and 16 with the other α substituents. ${ }^{13}$ A consequent loss of planarity, e.g., by rotation of the anthryl and/or the anisyl groups, results in destabilization of the ions which is higher for $\mathbf{1 6}(\alpha-\mathrm{Br})$ than for $\mathbf{1 0}(\alpha-\mathrm{H})$. The outcome is a higher $k_{\text {rear }}$ for $\mathbf{2}$, reduced importance of $\mathbf{1 0 b}$ compared with 10a and a lower rate of route b, steric hindrance to capture of C_{α} of $\mathbf{1 0}$, and preferred capture by AcOH or AcO^{-}at $\mathrm{C}-10^{5}$ to give 11. Capture at C_{68} first gives $14(\mathrm{~S}=\mathrm{Ac})$ which solvolyzes rapidly to give 4 , probably via $8(S=A c)$. Since the titrimetric k_{t} remains constant during a run and is identical with the values measured by UV, 4 is probably formed via the
 and not via $1 \rightarrow \mathbf{9 \rightarrow 1 0 \rightarrow 1 1 \rightarrow 1 2 \rightarrow 1 3 \rightarrow 7 \rightarrow 8 \rightarrow 4 . ~}$
In conclusion, the solvolytic site of $\mathbf{1}$ in good-ionizing relatively nonacidic solvents ($80 \% \mathrm{EtOH}, \mathrm{TFE}$) is $\mathrm{C}_{c r}$, and $\mathrm{C}-\mathrm{Br}$ bond cleavage is rate determining. In AcOH , the initial solvolytic site is $\mathrm{C}-10$ and $\mathrm{C}_{-}{ }^{+} \mathrm{OH}_{2}$ and $\mathrm{C}-\mathrm{OAc}$ bond cleavages are rate determining for the loss of optical activity and for the solvolysis, respectively. The mechanistic consequences are (i) the availability of an additional competing route to the several ones known for vinylic solvolysis, ${ }^{14}$ and (ii) that the $k_{\mathrm{t}} / k_{\mathrm{t}}$ probe for ion-pair return should not be used indiscriminately for vinylic systems.

References and Notes

(1) Part 27: Z. Rappoport and J. Greenblatt, J. Am. Chem. Soc., 101, 1343 (1979).
(2) (a) C. K. Ingold, ''Structure and Mechanism in Organic Chemistry', 2nd ed., Cornell University Press, Ithaca, N.Y., 1969,pp 483-493; (b) S. Winstein, E. Clippinger, A. H. Fainberg, R. Heck, and G. C. Robinson, J. Am. Chem. Soc., 78, 328 (1956); (c) S. Winstein, B. Appel, R. Baker, and A. Diaz, Chem. Soc., Spec. Publ., No. 19, 109 (1965).
(3) (a) A. H. Fainberg and S. Winstein, J. Am. Chem. Soc., 78, 2763 (1956); (b) D. J. Raber, J. M. Harris, and P. v. R. Schleyer in "lons and Ion Pairs in Organic Reactions," Vol. II, M. Szwarc, Ed., Wiley-Interscience, New York, 1974.
(4) The rate constants measured by UV were used for calculating α and b. By using $\alpha=65 \mathrm{M}^{-1}$, we calculate that k_{t} should decrease by 4% at 1 half-life and by 6% at 2 half-lives owing to common ion rate depression. Such a decrease is within the experimental error.
(5) A minor product, which becomes the main product in wet $\mathrm{AcOH} / \mathrm{NaOAC}$, is 7 -(9-anthryl)-7-bromoquinone methide, formed probably by attack of ACO^{-}on the methoxy group of 10 . This product was not formed in $1: 1$ $A \mathrm{COH}-\mathrm{Ac}_{2} \mathrm{O} . Z$. Rappoport, J. Greenblatt, and Y. Apeloig, J. Org. Chem.,
in press.
(6) The product ${ }^{5}$ and both k_{α} and k_{t} are sensitive to small amounts of water in the AcOH . The values given are for a single batch of AcOH .
(7) From Table I, the uncorrected $k_{1}^{\circ} / k_{d}=2.64$ and $\geqslant 62 \%$ of 4 are derived from the free ion 5. By correction for the normal salt effect, $k_{\mathrm{t}}=3.33 \times$ $10^{-4} \mathrm{~s}^{-1}$ with $0.1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NBr}$; i.e., $k_{1}^{\circ} / k_{d}=7.8$ and $\geqslant 87 \%$ of 4 are derived from 5 .
(8) Y. Apeloig, Ph.D. Thesis, The Hebrew University, 1974.
(9) For nucleophilicity and ionizing power parameters of the two solvents, see F. L. Schadt, T. W. Bentley, and P. v. R. Schleyer, J. Am. Chem. Soc., 98, 7667 (1976)
(10) 2. Rappoport and Y. Apeloig, J. Am. Chem. Soc., 97, 821, 836 (1975).
(11) Return to C_{x} will rapidly give product via $10 \rightarrow 14 \rightarrow 8 \rightarrow 4$.
(12) A. Streitwieser, Jr., 'Solvolytic Displacement Reactions', McGraw Hill, New York, 1962, p 102.
(13) Similar steric interactions were invoked for explaining the preferred formation of the 9 -anthrylvinyl cation rather than the $\mathrm{sp}^{2} \alpha-(9-$ anthry $)-\alpha-$ chloroethyl cation in the acetolysis of 9 -(α-chlorovinyl)anthracene, and the relatively low solvolysis rate difference of the latter and $\alpha-19$-anthryl)ethyl chloride: Z. Rappoport, P. Shulman, and M. Thuval (Schoolman), J. Am. Chem. Soc., 100, 7041 (1978). The reaction of acetone at C_{10} of the 9 -anthryl diphenylmethyl cation but at C_{α} of the 9 -anthryl phenylmethyl cation (B. Bodo, J. Andrieux, and D. Molho, C.R. Acad. Sci., Paris, Ser. C, 273, 170 (1971)) may be due to a similar reason.
(14) P. J. Stang, Z. Rappoport, M. Hanack, and L. R. Subramanian, '"Vinyl Cations", Academic Press, New York, 1979.

Zvi Rappoport,* Jeremy Greenblatt Department of Organic Chemistry The Hebrew University, Jerusalem, Israel Received January 31, 1979

Transient Photocurrents and Conversion Losses in Polysulfide-Based Photoelectrochemical Cells

Sir:
The development of a practical photoelectrochemical cell (PEC) for solar energy conversion into electricity requires long-term output stability and reasonable conversion efficiency. Treatments have been presented which can predict the thermodynamic stability of a certain semiconductor/electrolyte combination, ${ }^{1}$ but, even if a system is thermodynamically unstable, kinetic factors may still lead to long-term stability. ${ }^{2}$ Transient photocurrents, as reported by us recently, ${ }^{3}$ can be useful in certain cases, to evaluate PEC performance by way of the, somewhat neglected, effect of the cell's solution kinetics.
We describe here how such transients yield information on long-term stability and conversion efficiency losses in PEC's using polychalcogenide redox electrolytes. Figure 1 illustrates the time dependence of the photocurrent (at close to short circuit conditions) in a PEC comprising a thin-layer, polycrystalline CdSe photoelectrode and polysulfide redox electrolyte. ${ }^{4}$ The transient photocurrent can be analyzed by considering the difference between the peak-current density (I_{p}) and the steady-state one (I_{s}), and by defining a normalized ratio $(\mathrm{NR}) \equiv\left(I_{\mathrm{p}}-I_{\mathrm{s}}\right) / I_{\mathrm{p}}$. As $\left(I_{\mathrm{p}}-I_{\mathrm{s}}\right)$ expresses conversion losses in the cell, $\mathrm{NR}=0$ represents zero loss and $\mathrm{NR}=1$ total loss, i.e., a situation with no steady-state output.

To gain insight in the cause of these transients, the NR was investigated as a function of several solution parameters (Figure 2). (Not shown are effects of temperature or peak-

Figure 1. Scheme of photocurrent density vs. time in $n \cdot \mathrm{CdSe}$ /polysulfide/CoS PEC. Electrolyte composition: A, $0.9 \mathrm{M}\left[\mathrm{S}^{2-}\right]$, no $\mathrm{OH}^{-}, 6.10^{-3}$ $\mathrm{M}\left[\mathrm{Se}^{2-}\right.$], temp, $34^{\circ} \mathrm{C}$, NR. 0.05 (the same behavior is obtained in 2 M $\left[\mathrm{S}^{2-}\right], 2 \mathrm{M}[\mathrm{S}], 2 \mathrm{M}\left[\mathrm{OH}^{-}\right]$, no $\left.\mathrm{Se}^{2-}\right) ; \mathrm{B}, 0.9 \mathrm{M}\left[\mathrm{S}^{2-}\right], 1 \mathrm{M}[\mathrm{S}]$, no OH^{-}, no Se^{2-}, temp, $34^{\circ} \mathrm{C}, \mathrm{NR}, 0.2 ; \mathrm{C}, 0.25\left[\mathrm{~S}^{2-}\right], 0.2 \mathrm{M}[\mathrm{S}]$ no OH^{-}, no Se^{2-}, temp, $44^{\circ} \mathrm{C}, N R, 0.4 ; \mathrm{D}$, as C but at $24^{\circ} \mathrm{C}, \mathrm{NR}, 0.6$. Identical peak current densities (I_{p}) were obtained in all cases by adjusting the incident light intensity; a $2 \cdot \mathrm{~cm}^{2}$ area of polycrystalline thin layer of CdSe on Ti was exposed to light and solution. Light source: filtered $250-\mathrm{W}$ quartz-iodine lamp ($\lambda>610 \mathrm{~nm}$ only). Care was taken to ensure that the counter electrode ${ }^{3 a}$ was negligibly polarized, so that no part of the transient response ascribed to the CdSe could be due to such polarization.

